61 research outputs found

    A case study of predicting banking customers behaviour by using data mining

    Get PDF
    Data Mining (DM) is a technique that examines information stored in large database or data warehouse and find the patterns or trends in the data that are not yet known or suspected. DM techniques have been applied to a variety of different domains including Customer Relationship Management CRM). In this research, a new Customer Knowledge Management (CKM) framework based on data mining is proposed. The proposed data mining framework in this study manages relationships between banking organizations and their customers. Two typical data mining techniques - Neural Network and Association Rules - are applied to predict the behavior of customers and to increase the decision-making processes for recalling valued customers in banking industries. The experiments on the real world dataset are conducted and the different metrics are used to evaluate the performances of the two data mining models. The results indicate that the Neural Network model achieves better accuracy but takes longer time to train the model

    An ensemble-based decision tree approach for educational data mining

    Get PDF
    Nowadays, data mining and machine learning techniques are applied to a variety of different topics (e. g., healthcare and disease, security, decision support, sentiment analysis, education, etc.). Educational data mining investigates the performance of students and gives solutions to enhance the quality of education. The aim of this study is to use different data mining and machine learning algorithms on actual data sets related to students. To this end, we apply two decision tree methods. The methods can create several simple and understandable rules . Moreover, the performance of a decision tree is optimized by using an ensemble technique named Rotation Forest algorithm. Our findings indicate that the Rotation Forest algorithm can enhance the performance of decision trees in terms of different metrics. In addition, we found that the size of tree generated by decision trees ensemble were bigger than simple ones. This means that the proposed methodology can reveal more information concerning simple rules

    Comparing Performance of Data Mining Algorithms in Prediction Heart Diseases

    Get PDF
    Heart diseases are among the nation’s leading couse of mortality and moribidity. Data mining teqniques can predict the likelihood of patients getting a heart disease. The purpose of this study is comparison of different data mining algorithm on prediction of heart diseases. This work applied and compared data mining techniques to predict the risk of heart diseases. After feature analysis, models by five algorithms including decision tree (C5.0), neural network, support vector machine (SVM), logistic regression and k-nearest neighborhood (KNN) were developed and validated. C5.0 Decision tree has been able to build a model with greatest accuracy 93.02%, KNN, SVM, Neural network have been 88.37%, 86.05% and 80.23% respectively. Produced results of decision tree can be simply interpretable and applicable; their rules can be understood easily by different clinical practitioner

    Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing

    Full text link
    Although neural networks (especially deep neural networks) have achieved \textit{better-than-human} performance in many fields, their real-world deployment is still questionable due to the lack of awareness about the limitation in their knowledge. To incorporate such awareness in the machine learning model, prediction with reject option (also known as selective classification or classification with abstention) has been proposed in literature. In this paper, we present a systematic review of the prediction with the reject option in the context of various neural networks. To the best of our knowledge, this is the first study focusing on this aspect of neural networks. Moreover, we discuss different novel loss functions related to the reject option and post-training processing (if any) of network output for generating suitable measurements for knowledge awareness of the model. Finally, we address the application of the rejection option in reducing the prediction time for the real-time problems and present a comprehensive summary of the techniques related to the reject option in the context of extensive variety of neural networks. Our code is available on GitHub: \url{https://github.com/MehediHasanTutul/Reject_option

    Quantum Face Recognition Protocol with Ghost Imaging

    Get PDF
    Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis (QPCA), and quantum independent component analysis (QICA). A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is O(Nlog N) -- N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.BERC.2018-2021 Severo Ochoa.SEV-2017-071

    Performance improvement of decision trees for diagnosis of coronary artery disease using multi filtering approach

    Get PDF
    The heart is one of the strongest muscular organs in the human body. Every year, this disease can kill many people in the world. Coronary artery disease (CAD) is named as the most common type of heart disease. Four well-known decision trees (DTs) are applied on the Z-Alizadeh Sani CAD dataset, which consists of J48, BF tree, REP tree, and NB tree. A multi filtering approach, named MFA, was used to modify the weight of attributes to improve the performance of DTs in this study. The model was applied on three main coronary arteries including the Left Anterior Descending (LAD), Left Circumflex (LCX), and Right Coronary Artery (RCA). The obtained results show that data balancing has a valuable impact on the performance of DTs. The comparison results show that this study provides the best results applied on the Z-Alizadeh Sani dataset compared to previous studies. The proposed MFA could improve the performance of the classic DTs algorithms significantly, with the highest accuracies obtained by NB tree for LAD, LCX, and RCA are 94.90%, 92.97% and 93.43%, respectively

    Toxicity prediction in pelvic radiotherapy using multiple instance learning and cascaded attention layers

    Get PDF
    Modern radiotherapy delivers treatment plans optimised on an individual patient level, using CT-based 3D models of patient anatomy. This optimisation is fundamentally based on simple assumptions about the relationship between radiation dose delivered to the cancer (increased dose will increase cancer control) and normal tissue (increased dose will increase rate of side effects). The details of these relationships are still not well understood, especially for radiation-induced toxicity. We propose a convolutional neural network based on multiple instance learning to analyse toxicity relationships for patients receiving pelvic radiotherapy. A dataset comprising of 315 patients were included in this study; with 3D dose distributions, pre-treatment CT scans with annotated abdominal structures, and patient-reported toxicity scores provided for each participant. In addition, we propose a novel mechanism for segregating the attentions over space and dose/imaging features independently for a better understanding of the anatomical distribution of toxicity. Quantitative and qualitative experiments were performed to evaluate the network performance. The proposed network could predict toxicity with 80% accuracy. Attention analysis over space demonstrated that there was a significant association between radiation dose to the anterior and right iliac of the abdomen and patient-reported toxicity. Experimental results showed that the proposed network had outstanding performance for toxicity prediction, localisation and explanation with the ability of generalisation for an unseen dataset

    MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble for Breast Cancer Histology Image Classification

    Get PDF
    Breast histology image classification is a crucial step in the early diagnosis of breast cancer. In breast pathological diagnosis, Convolutional Neural Networks (CNNs) have demonstrated great success using digitized histology slides. However, tissue classification is still challenging due to the high visual variability of the large-sized digitized samples and the lack of contextual information. In this paper, we propose a novel CNN, called Multilevel Context and Uncertainty aware (MCUa) dynamic deep learning ensemble model. MCUa model consists of several multi-level context aware models to learn the spatial dependency between image patches in a layer-wise fashion. It exploits the high sensitivity to the multi-level contextual information using an uncertainty quantification component to accomplish a novel dynamic ensemble model. MCUa model has achieved a high accuracy of 98.11% on a breast cancer histology image dataset. Experimental results show the superior effectiveness of the proposed solution compared to the state-of-the-art histology classification models
    corecore